Jump to content
Co nového? Mé kurzy
Komunita:
Diskuze Sledované příspěvky Žebříčky

Žebříčky

Oblíbený obsah

Zobrazuji obsah s nejvyšší reputací od 7.5.2023 ve všech rubrikách.

  1. Hlavním směrem obchodování na Finančníkovi jsou systematické strategie, jejichž fungování je možné automatizovat, a tudíž provádět s minimální časovou náročností i při práci s širšími diverzifikovanými portfolii (která považujeme za hlavní svatý grál retailového obchodníka). Systematizace obchodování s sebou nese potřebu osvojit si technické nástroje a postupy, které nám v tradingu následně šetří čas a zvyšují efektivitu. Podle toho, z jakého zázemí obchodník přichází (sám nejsem programátor, ani jsem dříve příliš technice nerozuměl), je pak přirozené, že technické výzvy mohou vyvolávat mnoho průběžných dotazů a nejistot. Proto na Finančníkovi vznikla skupina TechLab, jejímž cílem je všem pomoci překonat technické problémy a inspirovat se, jak situace řeší v tradingu ostatní. Ve skupině je dnes mj. přes 5 000 příspěvků, množství video tutoriálů a dokonce kompletní hotové Python řešení pro automatizované obchodování. V TechLabu naleznete technickou podporu, průběžně publikované nové technické tutoriály, ve kterých ukazujeme, jak v praxi zvládáme klíčová témata spojená se systematickým obchodováním a také celé minikurzy, jejichž cílem je předávat vzdělávání v komplexnější podobě. Minikurzy jsou aktivně vedeny lektorem, který s vámi bude vyhodnocovat zadávané domácí úkoly a pochopitelně odpovídat na všechny otázky. Nabízí tak reálnou cestu, jak si osvojit technické oblasti, které v systematickém obchodování považujeme za klíčové. Na léto a podzim máme v uzavřené skupině TechLab připravené dva nové běhy minikurzů – praktické začátky s Pythonem a API komunikace se systémem Interactive Brokers. Pro účastníky TechLabu jsou minikurzy zdarma. Výuku pythonu začínáme 2.6.2023. Jde o klíčový minikurz, který vás naučí pracovat se skriptovacím jazykem tvořícím dnes pilíř technické stránky našeho tradingu (Python používáme pro řízení automatizace, práci s daty, nejrůznější podpůrné skripty atd.). Minikurz opakujeme jednou za cca 18 měsíců, proto tento aktivně lektorovaný termín nezmeškejte. Minikurz Základy zvládnutí Pythonu je určen především neprogramátorům a obsahuje následující lekce (lekce jsou publikovány jednou za týden): Lekce 1 – Úvod do Pandas. Hned od první lekce se pustíme do práce s poskytnutými datasety. Po úvodním představení kurzu a shrnutí přípravy prostředí se naučíme do Pandas načíst data z csv souboru. Dále si ukážeme funkce pro omezení záznamů a řekneme si, jak následně provedené změny uložit. Lekce 2 – Datové typy. V lekci si vysvětlíme, co to jsou základní datové typy. Ukážeme si funkce pro zjištění, s jakými datovými typy v jednotlivých sloupcích tabulky pracujeme a také se naučíme techniky převodu dat, které nám umožní předcházet případným chybám vycházejícím z nesouladu datových typů. Lekce 3 – Seznámení s DataFrame. V této lekci se podíváme trochu komplexněji na datové typy, představíme si nejběžnější složené datové typy. Také si řekneme, co je to dataframe a naučíme se základní operace napříč tabulkou. Lekce 4 – Získáváme první data. V této lekci si vysvětlíme, jak pracovat s osami v rámci dataframe, dále se naučíme postupy pro ošetření prázdných hodnot v načtených datech a také si ukážeme, jak aplikovat na datech základní statistické operace. Lekce 5 – Práce s indexy. Lekce zaměřená na práci s indexy, vysvětlíme si, jak s indexy pracovat a naučíme se, jak můžeme díky indexu efektivně získávat z dataframe požadované hodnoty a také, jak pomocí stejných principů nahrazovat hodnoty za jiné. Lekce 6 – Seskupování dat. Pokud bude dataset obsahovat záznamy více systémů, pak nás kromě pohledu na celkový stav portfolia budou zajímat také dílčí výsledky jednotlivých strategií. Vysvětlíme si principy seskupování dat, které nám umožní právě tyto dílčí výsledky získávat rychleji a efektivněji. Lekce 7 – Spojování tabulek. V lekci se naučíme spojovat tabulky, vysvětlíme, jak řešit dva nejčastější důvody spojování tabulek, kterými jsou přidávání dalších řádků ke stávajícím záznamům a také rozšíření tabulky o další sloupce. Současně připojíme další dva datasety. První obsahuje data našeho pracovního portfolia za delší období, druhý pak doplňující informace o průběhu jednotlivých obchodů. Lekce 8 – Smyčky. Zaměřeno na smyčky, které patří mezi nejčastěji používané techniky v programování a setkáme se s nimi v téměř každém Python skriptu. V našem minikurzu si podrobněji vysvětlíme, jak funguje smyčka for...in, která nám umožní procházet záznamy v dataframe poměrně jednoduchou a srozumitelnou syntaxí. Lekce 9 – Vizualizace dat. V závěrečné lekci minikurzu se naučíme data vykreslovat do grafů. Vysvětlíme si základní principy použití funkce plot a předvedeme, jak zobrazit průběh equity celého portfolia i jednotlivých strategií. Po minikurzu Pythonu bude v TechLabu následovat několik samostatných video tutoriálů ukazujících tipy, které mě s Bogdanem pomáhají v trading praxi. Následně spustíme nový minikurz, ve kterém se naučíme komunikovat se systémem Interactive Brokers pomocí rozhraní API. Použijeme k tomu právě Python a knihovnu ib_insync. V průběhu výuky postupně vysvětlíme principy, které umožňují získávat z TWS požadované informace o prováděných obchodech, ale také si ukážeme postupy, které mohou tvořit základ pro stavbu vlastního řešení automatizovaného obchodování, tzv. autotraderu. Obsah minikurzu: Lekce 1 - Obecné seznámení s knihovnou ib_insync. Naučíme se otevřít komunikační kanál a také získávat z IB informace o cenách vybraného trhu. Lekce 2 - Ze systému IB načteme informace o obchodním účtu a obsahu portfolia. Lekce 3 - Ukážeme si, jakým způsobem odesílat příkazy do trhu. Vysvětlíme si, jak vytvořit objednávku a rozdíl mezi zadáním MKT a LMT příkazu. Lekce 4 - V této lekci se budeme věnovat sledování otevřených pozic a čekajících příkazů. Lekce 5 - Na závěr minikurzu spojíme všechny získané informace a vytvoříme si jednoduchý autotrader, který odešle do IB příkazy na základě signálů připravených v csv souboru. Pro zapojení do minikurzů se stačí přihlásit do skupiny TechLab. Podrobnosti o TechLabu a možnostech přihlášení naleznete na stránce https://tri.financnik.cz/techlab
    2 bodů
  2. Diverzifikace portfolia: Sázka na kanadské trhy a testování australských akcií. Jak může hedging mean reversion strategií zvýšit výkonnost vašeho portfolia? A objevte nový přístup k short-term momentum obchodování, který vám pomůže snížit drawdowny v dobách nestability na trzích. Diverzifikace skrz mimo americké trhy Tento směr se mi zatím v portfoliu velmi osvědčuje. Mimo americké trhy obchoduji živě v současné době swingovou mean reversion strategii (pouze long stranu), kterou v Trading Room sdílím pod názvem TDMR1. Ta obchoduje kanadské akcie. Zajímavé je strategii porovnávat s podobnou long mean reversion strategií, kterou pod označením MR3000L obchoduji na amerických trzích. Skrz TDMR1 jsem k minulému týdnu zobchodoval letos 31 obchodů, obdobně je na tom MR3000L, která obchoduje přibližně shodné situace, ale na amerických trzích. Ta měla letos 45 obchodů. Ovšem TDMR1 obchodovala s úspěšností 74,19 % a sharpe 3,28, kdežto MR3000L s úspěšností 51,11 % a sharpe 1,16. Kanadské trhy se přitom obchodují velmi podobně jako americké – můžeme používat stejné typy příkazů, otevřené jsou ve stejné době. Komise jsou trochu vyšší, ale i přes ně mají strategie výrazně vyšší výkonnost než na amerických trzích. Tipoval bych si, že je to proto, že na kanadské trhy se zatím tolik algo obchodníků nesoustředí. Každopádně svoji strategii TDMR1 jsem začal sdílet v Trading Roomu, a pokud hledáte inspiraci bez toho, aniž byste si museli předplácet kanadská data, můžete se inspirovat v novém dashoardu, kde strategie vypadá takto: Mimo kanadské a americké trhy jsem se pustil do testování australských akcií. Ty jsou ještě méně likvidní než kanadské a z pohledu poplatků dražší na komise. Tak uvidíme, jestli se mi podaří tam nějakou strategii rozchodit. Zatím to vypadá tak, že cokoliv trochu funguje na australských trzích, tak generuje mnohem lepší backtesty na kanadských akciích. S velkou pravděpodobností tak spíše svoji pozornost zaměřím na spuštění dalších strategií na kanadských akcích. Hedging mean reversion strategií Pokud obchodujete swingové mean reversion strategie, možná jste stejně jako já přemýšleli, jak zejména long otevřené pozice zajistit proti případnému velkému krachu trhů v momentě nějaké významné makro události. Jako nejvhodnější se mi po dlouhém testování jeví hedgování long mean reversion pozic skrz short pozici v S&P 500, do kterého můžeme vstupovat například přes mikro kontrakty. Před testy jsem měl obavu, že podobný hedge bude výrazně ubírat na výkonnosti, ale nakonec to tak hrozné vůbec není. Naopak – na svém účtu jsem začal hedgovat i short mean reversion pozice (long pozicí v S&P 500) a oba tyto hedge dohromady dlouhodobě v backtestech nestojí žádnou výkonnost – naopak ještě trochu vydělávají. Přitom zajištění swingových mean reversion pozic umožňuje se stále rozumným riskem přiřadit systémům v portfoliích vyšší váhu – a tudíž z dlouhodobého pohledu více vydělávat. Rozhodně se mi tak vyplatilo s tímto testováním strávit čas a tento směr doporučuji. V Trading Roomu sdílím své testy a popis finálního nastavení zde. Long/short krátkodobé momentum v akciích Pokud jste před několika lety nemohli v akciových trzích najít funkční krátkodobé momentum strategie na short stranu, doporučuji zkusit zrevidovat testy. Tržní kontext posledních měsíců pomáhá zvýraznit strategie, které bylo možné dříve snadno přehlédnout. Osobně jsem takto našel velmi triviální přístup, který obchoduje de facto opak mean reversion strategií a kterému se logicky daří v aktuálním kontextu. Takto pro ilustraci vypadá equity křivka pouze této short momentum strategie (křivka obsahuje přes 1 200 obchodů, takže je solidně statisticky relevantní): Na první pohled je patrné, že strategii se daří zejména v tržních propadech posledních měsíců a patrně bude dobrým doplněním celého mého aktuálního portfolia obchodujícího z velké míry mean reversion přístupy. Strategie je tradičně velmi jednoduchá – de facto vstupuje short po volatilním klesajícím pohybu (short verze), nebo long po volatilním rostoucím pohybu (long verze) a pozici drží max. několik dnů. Co je ale podstatné – samu o sobě bych ji patrně neobchodoval – dlouhodobé sharpe ratio backtestu short strany je jen kolem 0,6. Strategie ale podstatným způsobem vylepšuje průběh celého mého portfolia. A podobným situacím možná čelíte také – v zásadě jste spokojeni s hlavními strategiemi svého portfolia, ale hodil by se vám přístup, který portfoliu pomůže v určitých momentech snížit délku a hloubku drawdownu. Přesně pro to mohou být dobré dnes popisované přístupy – jednak hedge skrz S&P 500 a pak tento hrubě popsaný momentum přístup. Ten sám zatím ještě paper traduji, ale v nejbližší době plánuji nasadit do živého portfolia. Jakmile se tak stane, nahodím jej také do dashboardu Trading Roomu.
    2 bodů
  3. K nově publikovaným hotovým kódům strategie Simple mean reversion jsem dostal řadu dotazů na výkonnost a chování na dalších trzích. V článku přináším mnoho testů, které mohou poskytnout inspiraci i při obchodování jiných vašich systémů. V prvé řadě ale malé upozornění. Historické backtesty jsou vždy jen orientační. Pokud vám v testech vyjde například nejvyšší historický drawdown 15 %, tak to neznamená, že v budoucnu nebudete mít vyšší. Naopak. S velkou pravděpodobností tomu tak bude. Osobně se tak více orientuji na metriky typu sharpe ratio, průměrná historická volatilita a na testech sleduji hlavně stabilitu výsledků na různých trzích a obdobích. Testy dokonce provádím na více platformách. Jednak proto, abych eliminoval možnost chyby v kódech (na každé platformě skriptuji strategii samostatně) a také proto, že různé platformy jsou různě pokročilé a umí třeba trochu něco jiného. A dnes už mě vůbec nepřekvapuje, že i po maximálním odladění skriptů mohou být v testech na různých platformách rozdíly – na jedné vidím např. průměrné roční zhodnocení 14 % na druhé 15,5 % a podobně. Důvodů může být celá řada, ať již drobné odchylky práce s historickými daty, nebo trochu jiné způsoby výpočtů indikátorů. Podstatné je, že výsledky různých testů se mohou trochu lišit. V dnešním článku publikuji testy z workflow, kde jsem více schopen používat portfolio simulace a maximálně přesně používám historická data akcií tak, jak byla obchodována v minulosti (samozřejmě zahrnuji delistované akcie, odděluji účtované dividendy atd.). Výsledky se tak v detailech mohou lišit od backtestů např. v Amibrokeru nebo MultiCharts. Ale jde skutečně o detaily, které osobně nepovažuji za podstatné. Všechny níže uvedené testy jsou za období 1.1.2000 – 5.3.2023. Backtest startuje s účtem 20 000 dolarů (lze použít i menší). Jsou aplikovány komise účtované běžně Interactive Brokers. Co se páky týče – jednotlivé strategie obchoduji bez páky. Každé strategii vždy přiřadím celkový dostupný kapitál (tj. první obchody pracují s 20 000 atd.). Na úrovni portfolia (SMR Short + SMR Long) je tedy použitá maximálně dvojnásobná páka v momentě, kdy by byly obsazeny všechny pozice Short i Long strany strategie (což se prakticky nestává). Níže uvedené testy pracují se zcela shodným nastavením, jako poskytuji v hotových kódech Simple mean reversion. Test 1 – základní SMR long a SMR short (Russell 3000) V doprovodné výuce k hotovým kódům Simple mean reversion aplikuji strategii na americké akcie obchodované v rámci indexu Russell 3000. Tato data jsou pro vytváření signálů poměrně dobře dostupná i bez toho, aniž by bylo potřeba používání dražších Norgate dat (můžete vyjít například z našeho Yahoo downloaderu poskytovaného v Techlabu, jehož součástí jsou i aktuální konstituenty právě indexu Russell 3000). Backtest indikuje zhruba následující historický průběh: Červená linka představuje SMR short, modrá SMR long, černá linka „portfolio“ SMR short + SMR long. Šedá výkonnost benchmarku – držení SPY (S&P 500 osobně používám jako univerzální benchmark ve svých portfoliích). Upozornění – zejména u shortů je historická výkonnost jen orientační, protože v backtestu nelze ověřit, jestli byla akcie skutečně shortovatelná či nikoliv. Strategie v tomto testu reinvestují kapitál, ale pouze „sami do sebe“ – tedy pozice SMR long se zvyšují tak, jak se zvyšuje equity křivka SMR long a stejně tak u SMR short. Základní statistiky celého portfolia (long + short): Počet obchodů: 12 930 Průměrné roční zhodnocení: 25,77 % Maximální drawdown: -28,77 % Průměrná historická volatilita: 9,62 % Sharpe ratio: 1,85 Úspěšnost: 61,83 % Průměrný zisk: 3,87 % Průměrná ztráta: -4,27 % Průměrné využití kapitálu: 59,15 % Test 2 – základní SMR long a SMR short (všechny US akcie) S poskytnutými hotovými kódy ale není nutné se omezovat na akcie konkrétních indexů. Sám například obchoduji všechny aktuálně obchodované US akcie. Pokud úplně stejný kód jako v testu 1 aplikuji místo na akcie Russell 3000 na všechny US akcie, dostanu následující výsledky: Červená linka představuje SMR short, modrá SMR long, černá linka „portfolio“ SMR short + SMR long. Šedá výkonnost benchmarku – držení SPY (S&P 500 osobně používám jako univerzální benchmark ve svých portfoliích). Strategie v tomto testu opět reinvestují kapitál pouze „sami do sebe“ – tedy pozice SMR long se zvyšují tak, jak se zvyšuje equity křivka SMR long a stejně tak u SMR short. Základní statistiky celého portfolia (long + short): Počet obchodů: 14 020 Průměrné roční zhodnocení: 35,50 % Maximální drawdown: -15,53 % Průměrná historická volatilita: 10,88 % Sharpe ratio: 2,29 Úspěšnost: 62,45 % Průměrný zisk: 4,23 % Průměrná ztráta: -4,53 % Průměrné využití kapitálu: 63,51 % Stejná šablona, ovšem lepší výsledky díky tomu, že obchodujeme více akcií. Test 3 – rebalancované portfolio (všechny US akcie) A nyní si pojďme ukázat malý trik, který má zásadní dopad na výsledky obchodování. Do obchodování zapojím rebalancování portfolia. SMR long je přidělen každý den 100 % dostupného kapitálu na úrovni portfolia. A stejně tak SMR short – také pracuje každý den se 100% dostupným kapitálem. Oproti testu 1 a 2 se tedy portfolio každý den rebalancuje. Pokud jedna strategie začne hodně vydělávat, výdělky jsou před novým vstupem rovnoměrně rozděleny do obou strategií – výdělky jedné strategie jsou použity nejen pro tuto jednu strategii, ale i pro druhou (a stejně při prodělcích). Stále pracuji se stejnou obchodní logikou a stejným nastavením kódů, které poskytujeme v rámci hotových kódů simple mean reversion strategie. Jen obchodovaná pozice je ovlivněna rebalancováním portfolia (tato simulace je dělána mimo Amibroker). Černá linka je equity rebalancovaného portfolia (SMR long + SMR short), šedá pro porovnání držení S&P 500 (akcie SPY). Základní statistiky celého portfolia (long + short): Počet obchodů: 14 020 Průměrné roční zhodnocení: 71,83 % Maximální drawdown: -22,83 % Průměrná historická volatilita: 19,02 % Sharpe ratio: 2,54 Úspěšnost: 62,50 % Průměrný zisk: 4,23 % Průměrná ztráta: -4,53 % Průměrné využití kapitálu: 63,51 % Rebalancování systematických portfolií je skutečně hodně mocná taktika, kterou sám u těchto strategií v rámci svého alternativního systematického fondu používám. Pozn.: Rebalancování portfolií nelze s poskytnutými hotovými kódy historicky simulovat (Amibroker toto neumí), ale samozřejmě taktiku lze s hotovými kódy aplikovat na budoucí obchody. Test 4 – rebalancované portfolio (všechny US akcie), výstup další den na OPEN V rámci Simple mean reversion strategie vystupuji při uzavření trhů a má to jednu ohromnou výhodu. Jelikož používám „MOC“ (Market On Close) příkazy, vystupuji za cenu, která je prakticky skoro vždy shodná s tou, kterou vidím jako denní uzavírací cenu na historických grafech (a tudíž mám ve svém obchodování vůči backtestům vesměs jen minimální skluz v plnění – vstupuji limity a vystupuji právě pomocí „MOC“ příkazů). Strategii lze ale určitě obchodovat i tak, že vystupujeme „další den za otevírací cenu“. Níže je uveden backtest, který se kromě času výstupu neliší s testem 3. V praxi ale bude třeba ještě u výstupu na otevírací ceně počítat se skluzem v plnění. Černá linka je equity rebalancovaného portfolia (SMR long + SMR short), šedá pro porovnání držení S&P 500 (akcie SPY). Počet obchodů: 14 094 Průměrné roční zhodnocení: 74,58 % Maximální drawdown: -21,53 % Průměrná historická volatilita: 20,09 % Sharpe ratio: 2,47 Úspěšnost: 61,85 % Průměrný zisk: 4,50 % Průměrná ztráta: -4,74 % Průměrné využití kapitálu: 63,28 % Výsledky jsou při výstupu tedy teoreticky dlouhodobě ještě lepší než na close. V praxi je ale třeba započítat skluzy v plnění a osobně bych si tipl, že výsledky tak budou s variantou 3 hodně podobné. Test 5 – rebalancované LONG portfolio (US a kanadské akcie) Poskytnuté hotové kódy lze použít nejen na americké akcie. Osobně strategii obchoduji i na dalších trzích – v tuto chvíli hlavně na kanadských, ale postupně plánuji spustit i další. Zde je pro ilustraci ukázka, jak vypadá rebalancované portfolio long strany (tedy bez shortování, které zatím mimo US nedělám) amerických a kanadských akcií. Pro obchodování kanadských akcií je použit stále stejný kód, kde bylo jen nastaveno obchodování akcií od 1 USD (na kanadské burze jsou i velmi likvidní akcie obchodovány za nižší ceny). Jsou aplikovány komise tak, jak je účtuje Interactive Brokers (obchodování kanadských akcií je dražší než v US). POZOR: Pro zjednodušení není řešen kurzový rozdíl kanadský vs. americký dolar – akcie jsou obchodovány ve stejné měně (tedy backtest je v tomto směru orientační a neuvádím zde podrobné statistiky). Modrá linka US akcie, zelená kanadské akcie, černá portfolio – SMR long na kanadských a amerických akciích, šedá pro porovnání držení S&P 500 (akcie SPY). Test dobře ilustruje, jak je strategie robustní – lze ji bez modifikací pustit i na další trhy a lze se tak diverzifikovat (dlouhodobá korelace mezi oběma trhy na výše uvedeném grafu je jen 0,28). Shrnutí Swingové mean reversion strategie vnímám jako velmi robustní a tvořím s nimi jeden ze základních pilířů mého systematického portfolia. Samozřejmě strategie mají horší i lepší měsíce (a roky), ostatně o těch horších jsem psal nedávno v článku Co mi nyní funguje v obchodování? II. Ale dnes publikované testy ukazují, že základní princip swingového mean reversion je velmi silný. Za důležité považuji poměrně vyšší frekvenci obchodů, s jejíž pomocí lze podstatně zlepšovat výkonnost prostřednictvím rebalancování (viz výsledky testu 3 vůči testu 2). Strategie přitom obchodují se stále stejnou logikou. Jediné, co se mění, je position sizing. Konkrétní sdílenou strategii dále v portfoliu kombinuji s dalšími přístupy. Ale jak je vidět na výše uvedených testech, i jen samotné obchodování Simple mean reversion strategie představuje silnou obchodní taktiku. Tu můžete v naprosto stejné podobě zapojit do svého tradingu skrz poskytnuté hotové kódy strategie Simple mean reversion.
    1 bod
  4. V minulém článku jsem popsal, co mi poslední měsíce funguje v rámci portfolia nejvíce – konkrétně short mean reversion strategie. Jak jsou na tom ale long mean reversion obchody? Mean reversion strategie obchodující akcie tvoří v tuto chvíli páteř mého portfolia, na kterém mám mj. postavený svůj systematický alternativní fond. Strategie obchoduji na long i short stranu – tedy nakupuji jak krátkodobé propady (mean reversion long), tak shortuji krátkodobé vrcholy (mean reversion short). Obchodované strategie se snažím vytvářet opravdu co nejjednodušeji (a co jsem dříve považoval za jednoduché, jsem poslední rok ještě zjednodušoval), a tak nikoho patrně nepřekvapí, že long a short mean reversion mají stejnou logiku, jen „zrcadlově obrácenou“. V minulém článku jsem ukazoval, že mean reversion short strategiím se poslední dobou daří solidně. S longy to byla v roce 2022 trochu jiná písnička. Long mean reversion obchod v mém pojetí znamená, že systém vyhledává trhy, které si v posledních obchodních seancích prošly výrazným poklesem. U těch zadávám limitní příkaz ve vzdálenosti určitého běžného rozkmitu trhu pod poslední uzavírací cenu. Pokud k této ceně trh intradenně klesne a jsem vyplněný, existuje vysoká šance (dlouhodobě více než 60 %), že se v nejbližších několika dnech trh „nadechne“ a systém bude moci ukončit pozici v zisku. Podrobně se popisu mean reversion strategií věnuji v knize Od myšlenky k reálným obchodům, jejíž přílohou je i komplet videí popisujících konkrétní pravidla mean reversion strategie. Logika long mean reversion vstupů je dobře vidět i na pozicích, které mám právě dnes (25.2.2022) otevřené na jednom ze svých účtů u Interactive Brokers: Hlavní graf zobrazuje long pozici v akcii CMC, která má za sebou výrazný pokles. V páteční seanci jsem proto zadával limitní příkaz na cenovou úroveň 50,96. Limitní příkaz byl vyplněn a na konci obchodní seance jsem zatím v otevřeném profitu +309 dolarů. Mimochodem vstupy u všech tří zobrazených pozic jsem dopředu rozesílal v rámci skupiny TradingRoom. Tedy jedna z ohromných výhod této metody obchodování je možnost si vše připravit dopředu evropské ráno a následně již s tradingem žádný čas netrávit. Aktuální pozice jsou v plusu, nicméně rok 2022 byl pro longy v mean reversion výzvou – zejména první měsíce 2022, kdy padaly technologické tituly často bez jakýchkoliv korekcí. Equity křivka mých long mean reversion systémů vypadala zhruba takto: Jaro 2022 poslalo long mean reversion do drawdownu, z kterého se systém dostává zatím jen velmi pomalu. Osobně toto ale nevnímám jako žádnou zásadní tragédii. Zejména proto, že obchoduji jednoduché strategie, u kterých rozumím jak vznikají jejich zisky a ztráty. A ztráty z longu u mean reversion akciových strategií byly začátkem roku 2022 v kontextu chování trhů prostě přirozené. Na výše uvedeném grafu je navíc vidět, jaké neuvěřitelné zisky měly long mean reversion strategie v roce 2020 a 2021. Jsem přesvědčený, že u strategií v budoucnu opět uvidíme nová high. Ovšem ztráty strategie 2022 mě průběžně nutily přemýšlet o tom, jak jednoduché mean reversion strategie dále diverzifikovat. Jako velmi triviální cesta se ukázala začít je obchodovat na dalších trzích. Takto v betaverzi mé aplikace pro TradingRoom vypadá equity křivka prakticky stejné long mean reversion strategie na kanadských akciových trzích: Strategii se zde daří poslední měsíce mnohem lépe (výsledky strategie vytváří nová maxima zisků) než v USA, přestože logika systému je úplně stejná. Dnes kanadskou verzi mean reversion systému již obchoduji spolu s US verzí živě na svém účtu a mým plánem je postupně do portfolia přidávat další regiony. Tento přístup velmi dobře reprezentuje můj pohled na profitabilní trading. Pracuji s jednoduchými strategiemi, kterým rozumím. Chápu, že strategie nemohou vydělávat 100% času a je potřeba se diverzifikovat do portfolií. V těch lze ale vymýšlet jen omezený počet logik. Další diverzifikaci tak přináší obchodování stejných logik na dalších trzích. A když už jsem zmínil téma portfolií, zde je ukázka toho, jak vypadá dohromady long mean reversion strategie se short mean reversion strategií. Jde o strategie vyučované ve swingovém workshopu, kde jsou nazvány SMR_S (short mean reversion - červená linka) a SMR_L (long mean reversion - zelená linka). Strategie jsou velmi podobné těm, co sám obchoduji jako MR3000. Černá linka reprezentuje portfolio výkonnosti obou strategií dohromady: Long i short verze mají pochopitelně své propady (ty pro dlouhé pozice jsem ostatně popsal v tomto článku). Výkonnost obou strategií dohromady je ale mnohem stabilnější. Už jen tyto dvě strategie dohromady dlouhodobě překonávají benchmark při výrazně nižší volatilitě a především s výrazně nižším zapojením kapitálu (jen cca 50 % kapitálů vůči tomu, co je potřeba při držení indexu). Takto vypadá spojená výkonnost backtestu long + short mean reversion vs. benchmark v podobě S&P 500 (šedá linka): Volný kapitál je tak možné využívat do dalších strategií (nebo trhů) a tím dál posouvat výkonnost a snižovat volatilitu. Což je přesně princip, který ve svém obchodování využívám a důvod, proč se tolik nezatěžuji drawdowny v rámci jednotlivých strategií.
    1 bod
×
×
  • Vytvořit...