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How Is the 
Past Related to the 
Future? 

Joel E. Cohen 

The following essay is 
based on a talk given on 
April 9, 1982, to the 
Center's Board o f  Trustees. 

A story is told of two men talking. One says, 
"Tell me, why do you always answer a question 
with a question!" The other says, "Yes, why?" 

The short answer to the question "How is 
the past related to the future?" is "I don't know." 
A longer answer, which follows, replaces this 
simple question with not one but two other 
questions. These more complicated questions 
show why we cannot be certain how the past is 
related to the future. 

Before asking these two questions, let me 
provide a framework for them by making two 
assumptions. The maior'assumption is that the 
universe evolves through mechanisms that act 
locally in time. On this assumption I shall con- 
sider as possible explanations of how the past is 
connected to the future only mechanisms or 
models or hypotheses that link the state of the 
world at one instant to the state of the world at 
the next instant. 

This assumption is intelligible (whether or 
not it is true) if time is taken as discrete or quan- 
tized, since in that event after any instant there 
is a unique next instant. If, by contrast, we take 
time as continuous, like the position of a pani- 
cle moving on a line, a tedious technical detour, 
which I propose to avoid here, would be neces- 
sary to define an infinitesimal increment of time 
in some sensible way. So my second, but minor, 
assumption is that time is discrete or approxi- 
mately so. 



To summarize, I assume that the vast sweep 
of cosmic history must be generated by the re- 
peated iteration of some process that moves the 
universe from one instant to the next. 

By what reasoning do I support this assump- 
t ion? Whatever iniluence the past has on the 
future passes through the bottleneck of the pres- 
ent.  So the state of the universe now at any given 
instant embodies all the influence (whether de- 
terministic or probabilisticl that the past will 
have on the state of the universe an instant later. 
When that future instant becomes the present, it 
too embodies the influence of all prior history on 
the  nest following instant. Unless you imagine 
that causality leapfrogs, i.e., that the past some- 
how influences the future by means that are not 
detectable in the present state of the universe, 
you should share my assumption that the traiec- 
tory of the world is the large-scale result of con- 
catenated processes acting from one time-point 
to  the next. In the same way, wind and water, 
eroding one speck of stone aiter another, carved 
the Grand Canyon. 

Within this framework, we can hope to un- 
derstand how the past is related to the future 
only if we can confidently answer "Yes" to both , 
the following questions: 

(1.1 If we observe the world for a long period, 
can we infer the elementary process by which 
the world changes from one instant to the next? 
More technically, givcn a sample path, can we 
infer its infinitesimal generator? Given the 
Grand Canyon, can we guess the physical laws 
that  govern the sculpting of grain after grain, 
speck after speck? 

121 If we suspect or are told what the ele- 
mentary process is b s  which the world changes 
from one instant to the next, can we describe the 
world's long-mn behavior? Given the physical 
principles of erosion, could we foresee the Grand 
Canyon? 

I see no reason to believe that the answer to 
either question is "Yes." In the rest of this essay, 
I will try to persuade you, by means of three 
examples. These three examples are toy models 
of the  world. They are all familiar to mathemati- 
cians who specialize in the areas from which the 
examples come; like lions and tigers in the care 
of zookeepers, these examples have lost their 

terrors for the specialists. But when these mathe- 
matical beasts escape their usual confines, their 
power and cunning return. With an understand- 
ing of these three examples will come, I hope, a 
clearer sense of the difficulties involved in un- 
derstanding how the past is related to the future. 

Example 1 

Consider the plight of Sam /Figure 11. He wants 
to buy a hamburger. He sees that in the past 400 
zillion of Big M's have been sold, while approxi- 
mately 17 of loe's have been sold. Should he infer 
that the difference in sales reveals some real 
advantage of Big M over Joe (superiority of prod- 
uct, location, or advertising], or could the differ- 
ence in sales be due to chance alone:' 

FIGURE I 
For a long time, Big M has had 
the lead over roe in the number 
oi hamburgers sold. Could this 
sustained lead be due to chance 
alone? 

Let us formalize the problem, forgetting 
about hamburgers. Suppose we have two players 
A (Big M )  and B (Joel. Let the times t = 1, t = 2, 
t = 3, etc., be the times when the first, second, 
third, etc., customer chooses to buy from Big M 
or from Joe. We will call each such choice a trial, 
and A wins the trial and B loses if the customer 
chooses Big M. For each time t ,  keep track of the 
score by letting Xt = 1 if A wins and B loses and 



X ,  = - 1  if A loses and B wins. We define A's 
cumulative score at  time t to be St = X I  + X z  
+ . . . + X I ,  that is, the sum of the scores at all 
t imes up to and including t. Thus A has won 
more trials than B has by time t if Sf exceeds 0 ;  A 
and B are tied at time t if S ,  = 0; and A has won 
fewer trials than B by time t if S t  is less than 0. 
One can graph the progress of competition be- 
tween A and B as shown in Figure 2, with time 
on  the horizontal axis and the cumulative score 
on  the vertical axis. 

For convenience, I propose to ignore ties and 
to say "A leads" provided that the broken line 
segment connecting successive values of S t  lies 
above the horizontal axis, while "B leads" pro- 
vided the graph of S t  lies below the horizontal 
axis. Thus, in Figure 2, A leads six times in eight 
trials, because the line is above the t axis for six 
of the  eight time intervals shown. 

Now suppose that at  each trial, player A 
wins with some fixed unknown probability, 
which 1 call p. Here p is a number greater than 0 
and less than 1. Player B wins with probability 
1 - p. Suppose also that all trials are mutually 
independent, so that regardless of how many 
t imes A has won or lost in the past, A's probabil- 
ity of winning at  the next trial is still just p. 
Think of A's winning or losing as being deter- 
mined by successive tosses of a coin with enough 
wear on one side to make the probability of heads 
(say1 iust p. 

Note that this mathematical model for the 
sequence of choices between Big M and Joe is 
highly idealized. For example, real people might 
try to  influence their friends to buy the kind of 
hamburgers they like; or preferences might 
change over time. The model excludes all such 
complexities. I want to show that our intuition 
may have difficulty even with a simple process. 

In the setting of this hypothetical sequence 
of trials [assuming independence and a constant 
p), I ask: How good are we at making inferences 
about p from cunen t  information about the frac- 
tion of time that A leads B (i.e., from cunent 
information about the fraction of time that the 
graph of S t  lies above the t axis)? 

More specifically, suppose that after t = 20 
trials, one of the two players (it doesn't matter 
which one) has been observed always to be in 

FIGURE 2 
An illustrative graph of the 
cumulat~ve score of player A 
\vertical axisl as a function of 
the number t of trials Ihorl- 
zontal axis\. When the graph is 
above the t axis, A leads by defl- 
nition; when below, B leads. 

the  lead. Mathematically we suppose either that 
S I  >O, S z r  0, S3 >O, . .  . , S Z o r  0, or that S I  < 0 ,  
S z  5 0, S 3  < 0, . . . , Szo  5 0. This is not supposing 
that  one or the other player won at  every trial 
(not:  X t  > 0, t = 1, 2 , .  . . , 2Ci, or X I  < 0, t = 1, 
2 , .  . . , 201, but just that whoever took the lead on 
the first trial kept the lead through all 20 trials. 

Is this evidence against p = I/: ? In other 
words, among sequences of 30 trials with p = l/r, 
is it rare for whoever leads after one trial never to 
l o s e  the  lead to the other player:' If people were 
choosing between Big M and Toe independently 
of each other, by flipping a fair coin with proba- 
bility l/2, would we be surprised to see that who- 
ever took the lead after the first customer made 
her choice always kept the lead? 

T o  gain time to think about your answer, 
and t o  help develop your intuition, consider se- 
quences of only two trials (Figure 31. All four 
possible paths of the graph of S, are shown. It is 
impossible for any of them to cross the t axis 
after only two trials. Thus  after two trials it is 
not rare, but certain, that whichever player takes 
the  lead after the first trial keeps the lead on the 
next trial (by our definition of "A leads"). 

Now what about 20 trials? In this case, the 
graph of S t  can cross the t axis. Among all possi- 
ble graphs of St  over 20 trials, would it be rare to 
find a graph that never crossed the t axis? More 
quantitatively, in what fraction of sequences of 
20 trials with p = l/2 would you expect one 
player or the other always to lead? 



Essay 

FIGURE 1 

In sequences of only two tr~als, 
i t  is not possible for the lead to 
change from one player to the 
other. 

Please stop here, and make a guess before 
you read the answer in the next paragraph. 

Whichever player gets the lead on the first 
trial keeps that lead in more than 35 percent of 
sequences of 20 independent trials with p = Yz, 
so more than one in three graphs of S, would 
never cross the t axis. 

After 20 trials, let k be the number of times 
the luckier player leads. In case the two players 
have each won the same number of times, let us 
put k = 10. Otherwise, k is just the number of 
line segments in the graph of St that lie on the 
side of the winner. E.g., in Figure 2, A leads six 
times. 

What is the most value of k, as- 
suming that p = %! To put the question in a 
more leading form, if p = Yz, is it most likely, 
among all possible sequences of 20 trials, that 
each player would lead for ten trials? 

What is the least probable value of k ?  
Is it more likely that k = 12 or that k = 18? 

If p = ' 1 2 ,  is it more likely that the luckier player 
will lead by not very much (k = 12) or by a lot 
ik = 1R)I 

The most probable value of k is 20. The least 
probable value of k is 10. The value k = 18 is 
more probable thank  = 12. 

I hope you are at least slightly surprised by 
these answers. But you might feel they arise at 
least in part because of the small number of 
trials. After all, when there are only two trials, 
the geometry alone obliges one player to lead 
twice, regardless of p. 

To develop our intuition and avoid wear and 
tear on our coin-flipping fingers, I have asked a 
computer to simulate 100 independent trials 
with p = K and to draw a graph of St  (on the 
vertical axis) as a function of t (on the horizontal 
axisl. Figure 4 shows six such simulations. The 
horizontal axis is moved up and down in the dif- 
ferent panels of Figure 4 in order to center the 
graph of St. The main feature oi these pictures is 
that the graph usually falls quite lopsidedly 
above or below the t axis. In other words, one 
player usually keeps the lead most of the time; 
the lead does not appear to be evenly distributed 
between the two players. 

Still, 100 trials is a relatively small number. 
With 1,000 trials, the distribution of the lead 
might even out. Figure 5 shows three such simu- 
lations. The tick marks that show individual 
trials on the t axis are so close together they are 
not distinguishable. Once again, the lead seems 
to pass to one player or the other and to remain 
there in a most lopsided way. (These simulations 
appear exactly as they came off the computer. I 
did not select them for "typicality" or any other 
feature.) 

For truly large numbers of trials, the com- 
puter is a less practical instrument of under- 
standing than theory. Here is what theory tells 
us when the number of trials (customers choos- 
ing hamburgers) gets very large, e.g., larger than 
ten thousand. 

Suppose that successive trials are indepen- 
dent, that the probability of player A's winning 
any given trial is an unknown constant p, and 
that at the end of 10,000 or more trials, one of 
the players is observed to have had the lead 99.4 
percent of the time. Does this suggest that p is 
not % ? 

No. If p = 1/2, one player would keep the lead 
99.4 percent of the time in roughly one of ten 
sequences of trials, as long as the number of 
trials were large. 

If trials occurred at a rate of one per second 
for 365 days, and if p = Yz, how long would the 
lead time of the more fortunate player have to be 
for the event to have probability of one in one 
hundred [a level of improbability commonly 
used by behavioral scientists to establish "sta- 
tistical significance")? In other words, name the 



FIGURE 4 
SIX independent s~mular~ons ,  
each of 100 ~ndrpendrnr rr~als, 
with A's probability of suc- 
cess p = l . 5 .  The axes are as In 

time T such that if the lead time of the more 
fortunate player were to equal or exceed T, you 
would be willing to reject the null hypothesis of 
p = ?h at the 0.01 level. 

You should take T =  364 days, 23 hours, 
27.6 minutes, approximately, or the entire year 
except 32.4 minutes. If the more fortunate player 
leads for any period shorter than this T,  e.g., 
merely 364 days and 12 hours, it is not evidence, 
statistically significant at the one percent level, 
against p = Yz. The advantage of the more fortu- 
nate player could be due to chance alone. 

These numerical examples illustrate what is 
known as the arc sine law. The arc sine law was 
discovered by Paul Levy in 1939 and was greatly 
extended by Paul Erdos and Mark Kac in 1947. It 
represents an understanding of the nature of 
random fluctuations that was simply unknown 
to earlier centuries. Formally, the arc sine law 
states that the probability density function of 

the fraction x of times that player A leads when 
p = L/z in a long series of independent trials is 

The qualitative shape of the graph of f(xl as a 
function of x is shown in Figure 6. The point is 
that f (x )  becomes very big as x approaches 0 or 1 ;  
it is most likely that A will lead either all of the 
time or none of the time. The low point of fix1 
occurs at x = l/z, meaning that it is least likely 
that A shares the lead evenly with B. 

The arc sine law shows that the fraction oi 
time that one player leads the other must be ex- 
tremely close to 1 before it provides evidence 
that, on the next trial, one player has a better 
chance than another. 

The probabilist William Feller, to whose 
great book I owe these numerical examples (with- 
out some of the frosting) as well as my under- 
standing of the arc sine law, comments on these 
results: "If even the simple coin-tossing game 
[our model for the customers' choices] leads to 
paradoxical results that contradict our intuition, 
the latter cannot serve as a reliable guide in more 
complicated situations." 



FIGURE 5 
Three independent simula- 
tions, each of 1,000 independent 
trials, with A's probability of 
success p = %. The axes are as 
in Figure 2. 

FIGURE 6 
A qualitative graph of the prob- 
abil i ty density /(XI, or relatlve 
frequency, with which player A 
leads for a fraction x of trials, in 
very long sequences of trials 
(O< x < 11, assuming indepen- 
dent trials and a probability 
p = '/Z of A'S winning on each 
trial. It is least likely that A 
will lead exactly '/z the time 
and most likely that A will lead 
either never or all the time. 

Now, with the same model (independent 
and identical trials, with probability p that A 
wans on each trial), consider another summary oi 
the past: the ratio of the number of trials so far 
on which A has won to the total number of trials 
so far. Mathematicians have long known that, 
except for sequences of trials so rare they may 
safely be ignored, the ratio just defined rapidly 
gets closer and closer to p as the total number of 
trials gets larger and larger. So if p is different 
from ?h, s u m a r i z i n g  the past by the' fraction of 
trials on which A has won (or Big M gets the 
customer) will rapidly reveal that p is not L / 2 .  
Rigorous statistical theory prescribes how to 
test whether the observedfraction of trials on 
which A wins rejects the possibility that p = !h. 

With this ratio as a summary of the past, we 
then have nearly complete information about 
future trials: After a large number of trials, the 
probability that A will win on the next trial is 
very close to the fraction of times A has won so 
far. Using this summary leads to none of the sur- 



prises that accompany use of the fraction of past 
trials on which A has been in the lead. 

We draw two conclusions. 
1 1 )  If you pick the right summary of prior 

experience, you derive the right information 
from the past about the future. 

(21 To pick the right summary, it helps if 
you already know how the past and future work. 

To reinforce conclusion (21, we give next an 
example in which the ratio summary that works 
so nicely above behaves bizarrely. 

Example 2 

Imagine a dish for growing bacteria that starts 
out with iust two bacteria. Suppose that the bac- 
teria are identical in all r es~ec t s  save that one is 
round and one is square (or one is black and one 
is blue, or one has hair and one is bald, etc.). 

As is well known. in suitable environments 
bacteria like to divide'. Suppose that when these 
bacteria divide into two daughter cells, the daugh- 
ter cells are equally and fully ready to divide 
again, but that the interval between the birth of a 
cell and its division into two daughters is ran- 
dom, independently and identically distributed 
for all cells. The cells never die. 

Let : = 1 be the time the first division oc- 
curs in the dish; t = 2 the time the second divi- 
sion occurs; and so on. Since the two original 
bacteria are assumed identical in their propensity 
to divide, the round one is as likely to divide first 
as the square one. With probability !h the dish 
will contain two round bacteria and one square 
one just after t = 1, when the first division is 
completed, and with probability '/z the dish will 
contain two square bacteria and one round one 
iust after t = 1 .  The possibilities are illustrated 
in Figure 7. 

Let us consider the ~ossibili t ies that follow 
from the first case through the next division that 
occurs. If there are two round bacteria and one 
square one just after t = 1 (the left half of Figure 
71, then there are two chances in three that the 
next division will occur in a round cell, and only 
one chance in three that the square cell will be 
next to divide. 

What will happen to the fraction of round 
bacteria in the dish after many divisions have 
occurred? Please guess. 

Here are some of the answers people have 
given me when I have asked them to guess: 

(a)  If the first cell to divide is a round one, 
then ultimately the fraction of round bacteria 
approaches 1 and the fraction of square bacteria 
becomes vanishingly small; if the first cell to 
divide is square, the reverse happens. 

(b) Regardless of what happens on the early 
trials, the fraction of round bacteria in the long 
run settles down near or at L / z .  

(c) Since there will always be both round 
and square bacteria in the box, even when the 
round cells are in the overwhelming majority, 
the square cells can always come back, so the 
fraction of round cells never settles down to any 
definite number but drifts aimlessly (nay, for- 
lornly) between 0 and 1 .  

Perhaps you have some prbposal not approx- 
imated by these three guesses. More likely, you 

FIGURE ' 
A dish starts out (at time t = 01 
with two bacteria, one round, 
one square. Whenever a division 
occurs, the cell that divides is 
equally likely to be any oi the 
cells already in the dish. Shown 
are the possiblities and condi- 
tional probabilities of each 
transltlon, for the first ( t  = 11 
and second ( t  = 21 divisions. 



wonder what these bacteria have to do with the 
behavioral sciences. 

So consider instead the early days of the tvpe- 
writer industry beiore the layout of letters on the 
keyboard became fixed. Imapne that two type- 
writer manufacturers introduced typewriters 
that were identical in all respects except the 
arrangement of letters. Call the two brands of 
typewriters A and B. 

Suppose that two typewriters, one of each 
type, were sold or given away, and that people 
subsequently decided which type to buy by ran- 
domly visiting someone who had a typewriter, 
hearing the glories of the keyboard arrangement, 
and buying the type owned by the person they 

FIGURE 4 

Each panel shows four ~ n d e p e n -  
dent s~mula t t ons  of thc  tractton 
o i  A balls lver t~ca l  axtsi in an  
urn as a iunction of the  number  
ot balls added Ihortzontal axisl, 
for the  first 100 add i t~ons .  On 
each t r ~ a l ,  a bail 1s randomly 
picked out  and then returned t o  
the urn  along w ~ t h  an addi- 
t ~ o n a l  ball bearing the same 
letter. A or B. 

visited. Ilt is my impression that many decisions 
about which personal computer to buy are made 
in just this way.) 

If this elementary process, which connects 
the fraction of type A keyboards after t purchases 
to  the traction of type A keyhoards aiter t 1 
purchases, is repeated over and over again, what 
will happen to the traction of type A keyboards 
sold in the long run? 

In the case of keyboards for the Roman al- 
phabet, we know that a single arrangement of 
letters, with minor variations for different lan- 
guages, has become nearly universal 11 thinkl. Is 
this the only outcome consistent with the ele- 
mentary imitative process I have hypothesized:' 

To  convince you that other outcomes are at 
least possible, consider light switches. In the 
United States and many other countries, down is 
off. In Australia and New Zealand, down is on! I f  
new countries chose the orientation of their 
light switches by choosing randomly among the 
practices of all existing countries (how they ac- 
tually do it, I don't know\, we would have an 
example where "down is off" had become wide- 
spread, but not universal. 

Bacteria, keyboards, and light switches are 
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all interpretations of a so-called urn model. The 
urn model was described by F. Eggenberger and 
George Polya in 1923. A careful analysis was 
published by David Blackwell and David Kendall 
in 1964. 

We have a large urn with one ball marked A 
and one ball marked B. At each time t = 1, t = 2, 
t = 3, etc., we stir the balls in the urn, choose 
one at random, note the letter on it, replace the 
ball, and add another ball with the same letter 
on it. 

After a large number of drawings, replace- 
ments, and additions, what happens to the frac- 
tion of A balls? 

I did not guess the correct answer when this 
question was put to me, and no one to whom I 
have put it, including mathematicians and spe- 
cialists in probability and statistics, has guessed 
correctly. 

To sharpen our intuition, we again have re- 
course to the comDuter to simulat; the random 
drawing of a ball karked A or B from an urn and 
its replacement in the urn along with an addi- 
tional ball bearing the same letter. In each panel 
of Figure 8, the horizontal axis indicates the 
number of balls that have been added to the 
initial two balls in the urn (starting from 0 addi- 
tional ballsl, and the vertical axis shows the frac- 
tion of balls in the urn marked A (startingfrom '/2, 
when no balls have been added]. In each panel, 
four independent simulations, each of 100 addi- 
tional balls, are shown. In all the simulations it 
appears that the fraction of A balls fluctuates at 
first, then levels out; but where the fraction of A 
balls levels out for one simulation appears to have 
no connection to where the fraction of A balls 
levels out for any other simulation. 

To see whether the fraction of A balls will 
eventually flatten out, will wander, or will con- 
verge on % or some other number, I have simu- 
lated the addition of 1,000 balls to the urn. Each 
panel of Figure 9 shows four independent simu- 
lations of 1,000 draws and additions. In all cases, 
the fraction of A balls fluctuates less and less as 
the number of draws increases, but the fraction 
of A balls after 1,000 balls have been added 
seems to vary wildly from one simulation to 
another. 

What is happening here? 

FIGURE 9 
Each panel shows four indepen- 
dent simulations of the fraction 
of A balls as 1,000 balls are 
added to the urn. kwes are as in 
Figure 8.  

Theory shows that if I follow the rules of 
drawing at random, returning the ball along with 
one of the same kind drawn, then the fraction ot 
A balls in my urn will gradually settle down to a 
fixed number between 0 and 1, possibly including 
0 or 1, with smaller and smaller fluctuations as 
t ime goes on. The fraction of A balls approaches a 
limit in the sense of elementary calculus. How- 
ever, if you follow the same rules, the fraction of 
A balls in your urn will also settle down to some 
fixed number between 0 and 1, but the fraction 
for your urn is totally independent of the ulti- 



mate  fraction of A balls in my urn! In fact, if 
many replicas of the urn model are run simulta- 
neously for a long time, theory shows that the 
ult imate fraction oi A balls in any given urn is 
iust as likely to  lie between 0 and 0.1 as it is to 
lie between 0.45 and 0.55 or between 0.9 and 1.0. 
The ultimate fraction oi  A balls is uniformly dis- 
tributed between 0 and I .  

This long-run behavior of the fraction of A 
balls is an example of regularity w i t h o u t  repro- 
duc ib i l i t y .  In statistical iargon, we call it an 
example of almost sure convergence to  a nonde- 
generate limit random variable. 

To  jump from urn to  universe, suppose the 
universe we live in is not unique, but is one oi 
many replicated universes started from the same 
initial conditions and governed by a chance 
mechanism analogous to  that of the urn. In this 
universe, some measured variable corresponding 
t o  the traction of A balls, say, the fraction of iron 
among all the elements, a t  first fluctuates but 
then settles down to  some long-run level. We 
interpret this long-run regularity as a law of na- 
ture and construct a physical theory to  explain 
it. Meanwhile, 'in the universe next door, un- 
known to  us, the fraction of iron among the 
elements 1s settling down to some completely 
different level and the creatures who live next 
door [if there are any-perhaps the presence of 
life is another random fluctuation1 are trying to 
explain that level as a law of nature. 

If, in fact, there were some law governing 
the  probability distribution of the fraction of 
iron among the elements over the entire ensem- 
ble of replicated universes, it would be quite 
difficult to guess that law by knowing the single 
simulation revealed through the universe you 
and 1 are confined to. 

To make life more difficult, suppose the 
asymptotic limit of the fraction of A balls in our 
particular urn is going t o  be p, some number be- 
tween 0 and 1. Then theory tells us  that our 
sequence of draws will look as if, instead of 
drawing balls, I were repeatedly adding an A ball 
with probability p and a B ball with probability 
1 - p, without paying any attention whatever to 
what is in the urn at the moment. N o  conceiv- 
able statistical test could distinguish between 
the actual process used in the urn model and 

independent choices oi A and B balls with prob- 
abilities p and 1 - p. 

In the urn model, each random choice early 
in a sequence oi  draws shapes the average or ex- 
pected long-run proportion of A balls in the in- 
definite future. Before any balls are drawn, when 
the fraction of A balls is !,r, the average long-run 
fraction of A balls is also 1/2 [which is lust the 
average of a uniform distribution between 0 and 
1). If, after the first ball is added, the fraction of A 
balls is 73, then the average long-run fraction oi  
A balls for all sequences o i  draws that begin this 
way is just V . 3 ;  and so  on. 

If we think of each draw of an A ball as suc- 
cess on a trial, then we can compare the long-run 
behavior of the fraction of successes predicted by 
the coin-tossing model in Example 1 with that 
resulting from the urn model here. In coin toss- 
ing, the fraction of successes rapidly approaches 
a constant [usually !I2 tor a fair coinl, and this 
constant is the same in every replication or sim- 
ulation of the process. In the urn model, the frac- 
tion of successes again approaches a constant, 
but that constant fluctuates randomly from one 
replication to another and is strongly affected by 
the random events that occur early in the process. 

Comparison of Examples 1 and Z shows there 
is no  reason to believe the notion that "things 
will average out in the long run." Whether things 
will average out in the long run depends on the 
details of how chance works, not merely on the 
presence of chance. 

Example 3 

We now come to a process that involves no 
chance. This example illustrates that surprises 
in the relation between past and future do not 
depend on probabilistic mechanisms. The pro- 
cess is known to  demographers as the "compo- 
nents method" of population proiection, and the 
property of this process that is obvious only to  
the initiated is known as the strong ergodic theo- 
rem of demography. Let m e  attempt a short 
account of these mysteries. 

Consider a human population in a defined 
region. O n  Tanuary 1 of year t, e.g., t = 1981, let 



vllrl be the number of females who will be one 
year old on their next birthday; let yZltl be the 
number of females who will be two years old on 
their next birthday; and generally let y;lrl be the 
number of females who will be i years old on 
thelr next birthday, for i = 1, 2,  3 , .  . . , 120. For 
brevity, I say that v , I ~ '  is the number of females 
in age class i in year t .  The counting stops when 
there is no one left at that age to count, and the 
choice of 120 as the oldest age is arbitrary. I call 
the whole set of these 120 numbers {y,lt!} a 
census. 

How is this year's census {y,11') related to 
last year's census {v,o - 11}1 

It will simplify the story, while not grossly 
affecting its outcome, if I assume at this polnt 
that  the population experiences no emigration or 
immigration. In the real world, of course, migra- 
tion can enormously alter a population's history. 
Here I exclude it to make a theoretical point. 

In the absence of migration, the population 
can change only through births and deaths. One 
way to measure births and deaths is in terms of 
age-specific rates. For example, the birth rate of 
25-year-old women is the number of children 
horn in one year (or some other specific interval1 
per thousand women of that age. [Exactly when 
during the year the 25-year-olds are to be counted 
is a technical problem best left for the entertain- 
ment of demographers.] Similarly, the death rate 
of 30-year-old women is the number, per thou- 
sand women aged 30 at the beginning of a year, 
who  die during the year. The use of one thousand 
women of each age as a reference group is a 
convenience to avoid decimal points. 

Now suppose the age-specific birth rates and 
death rates were constant over time. In consider- 
ing the possibility that the birth and death rates 
may be constant over time, we implicitly assume 
that males are present in sufficient numbers at 
the right ages to render possible the supposed 
fertility of the female population. Wealsoassume 
that  the birth and death rates are not themselves 
functions of the size of the female population in 
any or all age groups (technically, that birth and 
death rates are not density-dependent, at least 
over the time horizon of interest). 

Whatever rates we used to relate this year's 
census to last year's census, we use them again 

to  predict next year's census from this year's 
census, and then the following year's census 
from the census of next year, and so on into the 
indefinite future. 

What happens to the total size of the female 
population I 

What happens to the froction of all females 
who are in age class i l  

While you are thinking, and I hope, guess- 
ing, let me  point out that the mere posing of 
these questions reveals the discovery that they 
have regular and general answers. The answers 
to both questions are of practical use to demog- 
raphers in developing countries. Far more impres- 
sive to me  is the mathematical and scientific 
discovery that these questions have simple an- 
swers that are not interminable enumerations of 
special behaviors under varying conditions. 

What happens to total female population 
size and the fraction of the female population in 
each age class is described by the strong ergodic 
theorem of demography-another twentieth- 
century discovery, whose demographic content 
is due mainly to Alfred I. Lotka. 

Asymptotically, that is, after a long time, 
the female population size will change geomet- 
rically or exponentially. The exponential rate of 
change in female population size may be posi- 
tive, so that the population increases; zero, so 
that in the long run it is constant; or negative, so 
that  the population declines exponentially. 

Whether the rate of change in population 
size is positive, zero, or negative depends entirely 
on the birth and death rates, and not at all on the 
distribution of females among the age classes 
when the process of projection is begun (provided 
there are at least some females able to give birth 
in the initial population, and also under still 
weaker conditionsl. The long-run rate of popula- 
tion change depends only on the rates of birth 
and death, not the initial population census. 

The fraction of females in age class i, that is, 
the ratio of yiW to the total female population size 
in  year t ,  behaves as illustrated in Figure 10. 
There two different populations are both pro- 
jected forward in time using a hypothetical set of 
constant birth and death rates. After 100 years, 
the population pyramids, which consist of the 
fractions of females in each age class, are indis- 
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Thailand 

FIGURE I 0  

Illustration of the strong ergo- 
d ~ c  theorem of demography If 
two l n ~ t ~ a l l y  d~fferent age struc- 
tures experience ~dentlcal  b ~ r t h  
rates and survlval coefflc~ents 
for a long enough tlme, the 
d~fferences between the age 
structures w ~ l l  d~sappear. The  
upper age structure on rhe left 
descr~bes East Germany In 
1957, the lower age structure on 
the left estimates that of Thai- 
land In 1955. The f ~ p r e  IS from 
I Bourgeo~s-P~chat, The concept 
o i  a stable popula t~on appllca- 
tlon to the studs, of populations 
o i  countnes wlth ~ncomplete  
statlsflcs (New York L'nlted 
Narlons, 19681, p. 6 

tinguishable. Figure 10 illustrates the general law 
that, assuming constant birth and death rates, the 
long-run fraction in each age class depends only 
on those rates and not on the distribution of 
females amongage classes, or age structure, in the 
initial census. The long-run fractions of females 
in each age class are known collectively as the 
stable age structure determined by the corres- 
ponding birth and death rates. 

The two main phenomena described by the 
strong ergodic theorem of demography, under the 
assumption of fixed birth and death rates, are that 
the population changes size asymptotically at an 
exponential rate that depends only on the rates 
and not on the initial census; and that the popula- 
tion asymptotically approaches an age structure 
that also depends only on the rates and not on the 
initial census. 

Both phenomena are summarized by saying 
that populations forget their past. This forgetting 
makes a science of population growth rates and 
age structures possible. If it were necessary to 
know the exact census of England at the Battle of 
Hastings to explain quantitatively its age struc- 
ture and growth rate now, demography would be a 
hopeless subject. [There are those who argue it is 
anyway. Perhaps it is, but a need for the histori- 
cally unknowable is not one of the reasons why.] 

Review and Conclusion 

I have now given you an aerial reconnaissance of 
three ways in which the past may be related to the 
future: the coin-tossing model, as a model of 
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independent choices; the urn model, as a model 
of dependent choices; and the stable population 
model, as a model ot deterministic interactions. 

Consider now some general questions about 
how the past is related to the future in the light of 
these examples. 

Do early events matter greatly? Yes, for coin 
tossing, if you are Interested in who takes and 
keeps the lead. Yes, for the urn model. No, not at 
all, for the population model: growth rates and 
age structures are independent of early history. 

Do long stretches of all replications or simu- 
lations of the process look alike! Yes, for coin 
tossing, because most of the time one player has 
the lead and keeps it; changes of lead are rare. No, 
tor the urn model: the asymptotic fraction of A 
balls varies randomly from one simulation to the 
next. Yes, tor the population model: any long 
stretch oi  time will reveal population size chang- 
ing exponentially and constant age structure. 

Does the process revisit its initial condi- 
tions? Yes, for coin tossing: the two players 
return to being exactly tied infinitely often. No, 
for the urn model in general; the proportion of A 
balls in the long run will be exactly '/2 with negli- 
gible probability. No, for the population model, 
unless the initial age structure just happens to be 
the stable age structure. 

Finally, are practical uses of the model im- 
portant in the real world? Yes, yes, and yes! The 
coin-tossing model provides the underlying 
theory for nonparametric statistical tests of good- 
ness of fit that are widely used in applied, includ- 
ing industrial, statistics. Models with a formal 
structure very similar to that of the urn model 
arise in population genetics and are used in the 
planning and analysis of pig breeding. The theory 
of stable age structures has found wide use in 
rstlmating the demographic characteristics of 
countries with incomplete demographic data. 

Since none of the three examples has a mo- 
nopoly on practical usefulness, and since the 
other characteristics of the three examples are so  
widely divergent, I am left, and I leave you, with 
the problem of deciding: Which of these exam- 
ples, if any, is the world really like? 

It is as if a talk entitled "What Is Life?" 
described a bacterium, a redwood tree, and an ant 
colony. The question would remain unanswered, 

but the examples might give you an Idea of what 
some of lite's possiblities are. 

The question "How is the past related to the 
future?" remains unanswered here. One reason 
for our ditiiculty in answering i t  is that we are not 
especially good at  inferring the elementary pro- 
cess by which a system changes from one instant 
to the next, given observations of a system for a 
long t ime le.g., the lead in coin tossing or a single 
realization oi  the urn model!. Apart from such toy 
examples, a major part ot the problem is that the 
universe is a live performance that is being given 
only once. We cannot replay the universe, or even 
any large chunk of it, under the same initial con- 
ditions to see what would happen on a second try. 
Replication is often the key to analysis, and repli- 
cation on the scale germane to human and natural 
history is difficult. 

A second reason for our difficulty is that, 
given the elementary process by which a system 
changes from one instant to the next, we are not 
especially good at inferring what the long-run 
behavior of the system will be (e.g., the fraction of 
A balls in the urn model or the approach to  a 
stable age structure in the population modell. 
Again apart from such toy examples, which are 
susceptible to complete mathematical analysis, a 
major part o i  the problem is that our brains and 
computers belong to, and are actually rather 
small  parts of, the universe they aim to under- 
stand. Is it reasonable to hope that they can 
compute the behavior of systems that include 
themselves, even if they were given (which they 
are not]  the basic laws? 

The  task of understanding how past and fu- 
ture relate in small pieces of the world is not 
hopeless, merely difficult. Globally, I do not 
know how the past is related to the future, and I 
think it unlikely that anyone else can know with 
ultimate certainty. But the skepticism my three 
examples argue for can and should be applied to 
m y  conclusions as readily as to anyone else's. 


