Jump to content
Co nového? Mé kurzy
Články a tutoriály:
Archiv článků Psychologie obchodování Jak na obchodní plán Mé obchodní strategie
  • Trading Room – popis a nastavení portfolia

    Na Finančníkovi se snažím ostatní co nejvíce inspirovat pomocí vlastní praxe. Poslední měsíce vše zašlo tak daleko, že několik desítek obchodníků má zde v rámci služby Trading Room dopředu přístup k mým plánovaným obchodům, obchodním nástrojům typu automatizovaný finwin trader a pochopitelně výstupům z obchodní platformy zobrazující plnění, komise atd. Ve skupině obchoduji portfolio, jehož komentované nastavení může být přínosné pro všechny obchodníky, kteří jdou podobným směrem a přemýšlejí, jak si systematicky profitabilní trading poskládat.

    V rámci Trading Roomu obchoduji tři systémy:

    1. Krátkodobý mean reversion systém MR3000 držící pozice maximálně 5 dnů. Systém obchoduje long i short a vstupuje proti výraznějším denním pohybům v akciích indexu Russell 3000. Systém podrobněji popisuji zde.
    2. Intradenní mean reversion systém Finwin držící pozice pouze v průběhu denní seance. Systém obchoduje long i short. Otevřené pozice jsou ukončovány vždy na konci obchodního dne. Systém obchoduje akcie indexu Russell 3000 a kontroluji, aby nebyly obchodovány stejné pozice jako v rámci MR3000. Systém jsem velmi podrobně popsal na finwin.cz. Aktuální výsledky jsem samostatně naposledy komentoval zde.
    3. Trendfollowing systém MicroBreakout držící méně likvidní akcie. Vybírány jsou libovolné akcie obchodované na amerických burzách. Systém vstupuje do akcií tvořících nová high a drží je, dokud je v trhu rostoucí momentum. Může tak být v pozicích týdny nebo i několik měsíců. Popis systému můžete najít přes tento článek.

    Strategie mají historicky poměrně nízkou korelaci a jejich obchodování v rámci portfolia vedlo historicky ke snižování celkového drawdownu. Na této stránce je prezentován backtest, který sám používám pro finální obchodování. Samotný backtest má několik specifik a limitů, kterým je potřeba porozumět před zkoumáním samotných čísel:

    • Zobrazen je backtest od 1.1.2015 do 15.8.2021.  Mám k dispozici i delší testy, nicméně výsledky zejména intradenní strategie Finwin jsou až příliš optimistické (dříve bylo intradenní obchodování snazší). Proto sám pracuji s více aktuálním obdobím.
    • Zejména short strategie nemusí mít backtest zcela věrohodný. V softwaru nelze simulovat dostupnost akcií pro short, takže v reálu by některé obchody nebylo možné uskutečnit.
    • Intradenní strategie testuji s využitím pouze denních dat. Na nich nelze poznat, které signály by byly vyplněny jako první (u Finwinu sleduji až 50 signálů, ale zobchoduji pouze prvních 5 na long a 5 na short). V rámci backtestu proto používám náhodné pořadí u plnění – každý backtest bude trochu jiný. Ovšem ve finále se liší jen detaily equity křivek, díky množství obchodů jsou finální výsledky velmi podobné.
    • Výsledky strategie MicroBreakout v portfoliu testu nepochází z Amibrokeru a equity křivka se od té z Amibrokeru (jehož signály používám v Trading Roomu) nepatrně liší. Je to způsobeno tím, že každý software počítá trochu jinak indikátory, nepatrně jinak například zaokrouhlí některé výpočty atd.
    • Výsledky testu jsou s komisemi (vyššími než sám platím – v testu počítám minimálně 1 dolar/pozici, případně 5 centů/akcii, pokud je částka vyšší než 1 dolar).
    • Výsledky testů jsou bez reinvestování kapitálu – po celou dobu testu se pracuje pouze s počátečním stavem účtu. V praxi průběžně kapitál reinvestuji.
    • U limitních příkazů je v testu vyžadováno, aby cena prošla limitní cenou o hodnotě 0.001 * Close trhu. Nestačí tedy, aby se limit ceny jen dotkl. V praxi se tak občas dostanu do profitabilního obchodu, který backtest nezachytí.
    • Zejména short obchody nejsou v testu tříděné na fundamentální filtry, které v praxi používám. Hlavně poslední dobou filtry hodně pomáhají v obchodování shortů.

    Osobně tak backtest považuji za solidně věrohodný, byť jako vždy – v praxi očekávám horší výsledky zhodnocení a vyšší risk (vyšší drawdown).

    Backtest s výše uvedenými podmínkami vypadá pro celé portfolio následovně:

    Trading Room - backtest portfolia od roku 2015

    Pro porovnání je zobrazen i výsledek držení trhu SPY (ten pracuje s reinvestováním, kdy pozice je měněna po dividendách). Výsledky držení SPY pochopitelně nejsou zahrnuty do výsledků portfolia zobrazených ve sloupci „Combined“.

    Použité váhy pro jednotlivé systémy jsou:

    33,3 % MR3000
    33,3 % Finwin
    33,3 % Microbreakout

    V testu byl použit počáteční kapitál 60 000 USD, což je částka, se kterou jsem začínal účet v rámci Trading Roomu. Každý systém tak vytváří pozice z částky 20 000 USD, což odpovídá i tomu, jak generuji v rámci Trading Roomu signály (kromě strategie MicroBreakout, která v Trading Roomu pracuje s reinvestováním). Systémy MR3000  a Finwin používají pro výpočet signálů dvojnásobnou páku. Velikost pozice MR3000L, kde obchodujeme max. 5 obchodů na long stranu, tak vychází z kapitálu 20 000 dolarů děleno 5 pozicemi – v Trading Roomu otevírám pozice o velikosti 4 000 dolarů na akcii.

    Od myšlenky k reálným obchodům Hledáte cestu, jak se dostat ke konzistentním profitům?
    Rádi byste i v aktuálním kontextu obchodovali stabilně a bez emocí?
    Určitě si přečtěte novou knihu Od myšlenky k reálným obchodům
    Implementujte již od samotného začátku své praxe důležité systematické procesy a správné myšlení, které výrazně zvyšuje šance na stabilně profitabilní obchodování.
    Inspirujte se, jak trading dělat jinak a lépe.

    1/3 kapitálu pro jednotlivé strategie se mi jeví jako reálně optimální nastavení portfolia. Z výsledků je patrné, že nejvíce risku je pojeno se strategií MR3000S (drawdown až 50 %), ovšem v rámci celku jsem ochotný s takovým výsledkem fungovat.

    Základní parametry testu celého portfolia – průměrné roční zhodnocení 37 % při maximálním drawdownu 10,75 %. Toto by měla být jedna z nejdůležitějších lekcí každého tradera. Spojováním nekorelujících strategií získáváme mnohem stabilnější obchodní výsledky. Podle mého názoru by každý měl obchodovat portfolio alespoň o několika strategiích – nejlépe tak různorodých, jako je to ukázáno v rámci Trading Room portfolia. Současně to znamená, že z portfolia není vhodné si vybírat „jen něco“, ale je potřeba jej obchodovat jako celek.

    Podrobnější pohled na risk portfolia

    Při pohledu na měsíční zisky/ztráty je zřejmé, že není nic neobvyklého, pokud má portfolio dva po sobě jdoucí ztrátové měsíce:

    TradingRoom portfolio - vývoj backtestu po měsících

    Jako při jakémkoliv tradingu je proto potřeba toto přijmout jako fakt a není možné pochybovat například po dvou, třech týdnech, kdy systémy negenerují nové high. V praxi jen těžko budete ale hledat přístupy, které fungují každý měsíc/týden. Z mé zkušenosti je proto lepší přijmout realitu a naučit se s ní fungovat.

    Samotný drawdown portfolia osciluje mezi 5 až 10 %:

    TradingRoom - historický drawdown

    Nyní je strategie v drawdownu, nicméně díky dodatečným fundamentálním filtrům používaných při živém obchodování mám živé portfolio na cca 60 % zobrazené hodnoty drawdownu. V každém případě sám používám období drawdownu pro navyšování kapitálu. Obecně je určitě lepší spouštět strategie, když jsou v drawdownu, než když se obchodují na novém high.

    Je ale třeba se připravit na to, že drawdowny nemusí být hned překonány. Zde je zobrazeno období (svislá osa zobrazuje počet dnů v drawdownu), které na úrovní portfolia trvá pro překonání drawdownu:

    Trading Room- drawdown po dnech

    Běžně je to cca měsíc, nicméně např. na začátku roku 2019 trval drawdown cca 4 měsíce. V případě „smůly“ se tak může reálně stát, že podobné portfolio spustím na novém účtu a 4 měsíce budu ve ztrátě. Opět naprostá realita obchodování.

    A to jde o výsledky pouze z jediného backtestu. V praxi používám k odhadu risku Monte carlo analýzy, které indikují, že za sledované období lze realisticky očekávat drawdown až cca 15 %.

    Ovšem celkově se Monte carlo výsledky jeví u Trading Room portfolia dost stabilně. Zde je 5 nejlepších a 5 nejhorších portfolio equity křivek:

    Trading Room - monte carlo portfolia

    Důležité pro mě je, že jednotlivé systémy mají v případě drawdownů nízkou korelaci:

    Trading Room - korelace drawdownů

    Pokud jeden systém prodělává, je velmi pravděpodobné, že jiný alespoň trochu vydělá. Což mně osobně velmi pomáhá psychicky a v rámci portfolia se snažím systémy stavět právě i tak, abych měl výsledky co možná nejstabilnější.

    V každém případě je ale podstatné vždy obchodovat jen s takovými částkami, se kterými dokážete drawdown ustát.

    Sám kromě účtu v rámci Trading Roomu (dnes cca 70 000 dolarů, kde exekuce sdílím v rámci skupiny) obchoduji i podstatně vyšší účty v rámci svého fondu, u kterého používám podobné strategie. Ovšem ke zvládnutí drawdownů s vyšším kapitálem jsem se musel propracovat praxí. Dnes vnímám, že každé překonání trochu většího drawdownu (5-10 %) mi pomáhá v navýšení kapitálu a získání další důvěry v to, co dělám. Jsme tak opět u toho, že v tradingu je nejdůležitější praxe – obchodovat, obchodovat a obchodovat.

    Do začátku bych tak určitě začal obchodovat s nižším kapitálem – například 10 000 dolarů a soustředil se především na systematičnost a překonávání drawdownů. 15% drawdown v případě účtu 10 000 dolarů je 1 500 dolarů, což je něco, co by měl zvládnout překonat i začínající trader.

    Samozřejmě v případě nižšího kapitálu budou výsledky obchodování jakéhokoliv portfolia horší proto, že některé pozice není možné otevřít (akcie jsou příliš drahé) a především komise již ukrojí příliš velký podíl na zisku. Ale pokud přepočítám portfolio v rámci Trading Roomu na kapitál 10 000 dolarů, stejně je vidět, že i s tak nízkou částkou lze operovat, učit se a posouvat se kupředu.

    Portfolio obchodované s kapitálem 10 000 dolarů:

    Trading Room portfolio obchodované s 10 000 dolary

    A jakmile si psychika jen trochu zvykne, lze navýšit kapitál například na 20 000 dolarů, kde jsou výsledky již podstatně lepší:

    Trading Room portfolio - 20 000 usd

    31 % průměrného zhodnocení při 11% drawdownu s počátečním kapitálem 20 000 dolarů už se příliš neliší od výsledků, které backtest indikuje u podstatně vyššího kapitálu.

    Shrnutí

    Historické backtesty rozhodně nezaručující budoucí zisky, nicméně demonstrují určité hranice, ve kterých můžeme očekávat risk a zisk.

    Živá výkonnost reportovaná v Trading Roomu velmi podobně kopíruje výsledky pro rok 2021 zobrazené v druhé tabulce. Samozřejmě s faktem, že Finwin jsme pomocí autotraderu začali ve skupině obchodovat až od začátku srpna.

    Osobně mám tak k obchodovanému portfoliu solidní důvěru. Pokud však následujete moji práci, je potřeba:

    • Přizpůsobit risk vlastní psychice.
    • Vnímat „investiční horizont“ stejně jako já – tedy na úrovni měsíců, kdy by portfolio mělo překonat i případné hlubší drawdowny.

     

    15.8.2021

    Petr Podhajský

    Fulltime obchodník věnující se tradingu více než 20 let. Specializace na systematické strategie obchodované na futures a akciích. Oblíbený styl obchodování: stavba automatizovaných portfolio systémů, které využívá i v alternativním fondu, který spravuje.

    • Líbí se 7

    Zaměřeno na praxi systematického portfolio obchodování.

    Otevřeně sdílím to, co mně samotnému funguje.

    Pomohu vám získat důvěru v to, že trading je normální business, který lze dělat systematicky a profitabilně. Naučíte se pracovat s rizikem a diverzifikovat jej mezi různé strategie.

    >> Trading Room

    Další články na toto téma

    Od neúspěšného systému k ziskovému portfoliu (včetně trading simulátoru)

    Jeden z principů, který připomínám začínajícím traderům stále dokola je, že na jednotlivých obchodech příliš nezáleží. A jednotlivé obchody nelze "pilovat" k dokonalosti.
    Vím, že mnoho začínajících obchodníků má pocit, že vztah mezi pravděpodobností a riskem mohou ovlivňovat svými schopnostmi. Tedy například, že se naučí vyhledávat jednoduché cenové patterny s vysokou úspěšností a vysokým poměrem průměrného zisku na občasné ztráty. To je ale typický příklad kognitivního zkreslení, kterým se všichni více či méně necháváme ovlivňovat. Jedním z nejznámějších kognitivních zkreslení spojených s přílišnou sebedůvěrou je "overconfidence bias" (zkreslení přehnané sebedůvěry). To vede zejména začínající obchodníky k přecenění vlastních schopností, dovedností nebo informací. V kontextu tradingu může tento jev vést k rozhodování na základě nedostatečných nebo nesprávných informací, protože obchodník si myslí, že ví víc, než ve skutečnosti ví. Například trader může přecenit svou schopnost předpovědět pohyb trhu, a může tak podstupovat zbytečná rizika. Třeba proto, že z příspěvků na sociálních sítí má pocit, že to „musí jít“.
    Jednoduše řečeno – některé věci v tradingu kontrolovat můžeme, jiné nikoliv.
    Jednou z oblastí, kterou v tradingu kontrolovat nemůžeme, je výrazné zvyšování výkonnosti běžných obchodních přístupů, aniž bychom nezvyšovali risk.
    Sám obchoduji mnoho strategií. Mám rád například swingové mean reversion akciové strategie. Obchoduji je ale prakticky v té nejjednodušší možné podobě. Protože vím, že v reálném světě není cesta, jak zvýšit jejich výkonnost například 5x, aniž bych podstatným způsobem nezvyšoval risk (a to třeba skrytou cestou, kterou neuvidím v backtestu, protože testy vedoucí k podobné výkonnosti budou jednodušše přeoptimalizované).
    Výkonnost proto vždy posuzuji ve vztahu k risku. Metrik, jak to dělat, je celá řada. Osobně používám sharpe ratio. To velmi stručně řečeno udává poměr průměrné výkonnosti k průměrnému risku a opravdu hodně volně bychom mohli říct, že strategie se sharpe ratio 1 může mít průměrnou výkonnost například 20 % při max. drawdownu také cca 20 %, nebo 10 % při max. drawdownu také 10 % (sharpe ratio v praxi nepracuje s drawdownem, ale volatilitou výnosů).
    Strategie, které živě obchoduji, mají sharpe ratio někde mezi 0,5-1,5.
    Začínající obchodníci často hledají strategie, které budou mít sharpe ratio „v nebesích“ – například doufají v průměrné zhodnocení 100 % při maximálním drawdownu 5 %. To je upřímně s běžně dostupnými strategiemi naprosto nereálné.
    A čas v trzích vás naučí, že ani nemá smysl se pokoušet podobným směrem strategie posouvat.
    Cesta, jak výkonnost zvyšovat, je diverzifikace v rámci portfolií.
    Tím, že budete postupně obchodovat více nekorelujících strategií, zachováte jejich výkonnost, ale celkový risk bude klesat. Sharpe ratio se bude zvyšovat.
     Velmi dobře to v krátkém videu vysvětluje Ray Dalio (americký miliardář a významný hedge fund manager):

    https://www.youtube.com/watch?v=Nu4lHaSh7D4
    Ray ukazuje, že to, co ovlivňuje celkový risk našeho obchodování, je počet systémů (nebo zdrojů příjmů) a jejich korelace.
    To je mentální posun, který je potřeba si v tradingu osvojit. Je potřeba odpoutat pozornost od jednotlivých obchodů  a začít přemýšlet o systémech pracujících v celku.
    Na první pohled to nemusí vypadat složitě. Ale úplně snadné to není. Je potřeba vytvořit workflow, které zajistí, že jednotlivé systémy spolu dobře fungují, že se příkazy zadávají bez chyb, že dokážeme vše spolehlivě vyhodnocovat a podobně. Rozhodně to ale není nepřekonatelné. Podstatné je, do jaké oblasti trader zaměřuje svoji pozornost.
    V pochopení důležitých a méně důležitých věcí v tradingu mohou pomoct také simulace.
    Na Google Colabu s vámi sdílím svůj python simulátor náhodného obchodování.
    Naleznete jej na této adrese:
    https://colab.research.google.com/drive/1eLZr0-UuCx6srHLkF4QM0L_1LB5XvnzT?usp=sharing
    Skript si uložte na svůj Google Drive a můžete jej spustit černou šipkou v záhlaví. Pak stačí vyplnit příslušná políčka a kliknout na „Spočítej“:

    Prostředí je jednoduché. Skript generuje hypotetické systémy podle zadaných parametrů. Průměrný roční výnos 0,2 říká, že generujeme systém průměrně generující 20 % p.a. Pak je důležitá roční volatilita. Hodnota 0,2 stručně řečeno znamená, že můžeme očekávat drawdown cca 20-30 %. Dále zadáme počet let v simulaci a počet generovaných strategií.
    Klikneme na Spočítej  a dostaneme například podobný graf:

    Je zde daný počet equity křivek, které jsou vygenerované náhodně, ale s výchozími parametry výnosnosti a risku.
    Některé systémy z principu vydělávají více, jiné méně. Pod tabulkou naleznete základní pohled na výnos a risk:
    CAGR mean: 21,13 % CAGR max: 30,97 % CAGR min: -0,69 % Drawdown max: 40,15 % Drawdown min: 21,95 % Drawdown mean: 30,31 % Hodnoty se pochopitelně liší s každým během skriptu (křivky jsou generovány náhodně), ale rámcově budou při stejných parametrech vypadat podobně. Zde vidíme, že drawdown systémů se pohyboval v rozmezí 21,95 – 40,15 %. Výnosnost od -0,69 % do 21,13 % (ano, jedna strategie ztrácela podobně, jako se nám to bude dít na živých účtech).
    Všech deset systémů má průměrné zhodnocneí 21,13 % při průměrném drawdownu 30,31 %. To je relativně realistický poměr.
    Pokud ale v živém obchodování budete obchodovat se systémem, který má průměrné zhodnocení 21,13 % při drawdownu 30,31 %, není skutečně způsob, jak snížit drawdown nějakými "pokročilými taktikami" třeba na polovinu.
    Až na jedinou taktiku. Doslova hlavní „svatý grál“ tradingu, který se odehrává na úrovni portfolia.
    Řekněme, že bychom každé strategii přiřadili 1/10 kapitálu (na ukázce pracujeme s 10 strategiemi) a obchodovali je všechny najednou. Výkonnost portfolia by pak vypadala následovně:

    Max Drawdown: -4.90 % CAGR: 23.05 % Annual Volatility: 5.23 % Celkové portfolio má najednou průměrné roční zhodnocení 23,05 % při maximálním drawdownu -4,90 %.
    Věřím, že tento příklad hovoří za vše a maximálně doporučuji, abyste si s testerem hráli chvíli sami.
    Jsem přesvědčen, že po čase každému obchodníkovi začne docházet, jak hodně záleží na kombinaci strategií do celku (portfolia) a jak minimálně jsou podstatné jednotlivé obchody.
    Samozřejmě, že praktická implementace portfolií systémů má mnoho aspektů, které musíme řešit a sdílený python skript problematiku přibližuje jen ve zjednodušené a teoretické rovině. V praxi musíme systémy vytvářet, řešit rozdělování kapitálu mezi strategie, zajišťovat nízkou korelaci, systematicky obchodovat mnoho signálů atd.
    Podstatné ale je, kam ve svém tradingu zaměřujete pozornost – na precizování např. vstupních situací nebo na pilování portfolia jako celku...
     

    Co mi nyní funguje v obchodování? II

    V minulém článku jsem popsal, co mi poslední měsíce funguje v rámci portfolia nejvíce – konkrétně short mean reversion strategie. Jak jsou na tom ale long mean reversion obchody?
    Mean reversion strategie obchodující akcie tvoří v tuto chvíli páteř mého portfolia, na kterém mám mj. postavený svůj systematický alternativní fond. Strategie obchoduji na long i short stranu – tedy  nakupuji jak krátkodobé propady (mean reversion long), tak shortuji krátkodobé vrcholy (mean reversion short). Obchodované strategie se snažím vytvářet opravdu co nejjednodušeji (a co jsem dříve považoval za jednoduché, jsem poslední rok ještě zjednodušoval), a tak nikoho patrně nepřekvapí, že long a short mean reversion mají stejnou logiku, jen „zrcadlově obrácenou“.
    V minulém článku jsem ukazoval, že mean reversion short strategiím se poslední dobou daří solidně. S longy to byla v roce 2022 trochu jiná písnička.
    Long mean reversion obchod v mém pojetí znamená, že systém vyhledává trhy, které si v posledních obchodních seancích prošly výrazným poklesem. U těch zadávám limitní příkaz ve vzdálenosti určitého běžného rozkmitu trhu pod poslední uzavírací cenu. Pokud k této ceně trh intradenně klesne a jsem vyplněný, existuje vysoká šance (dlouhodobě více než 60 %), že se v nejbližších několika dnech trh „nadechne“ a systém bude moci ukončit pozici v zisku. Podrobně se popisu mean reversion strategií věnuji v knize Od myšlenky k reálným obchodům, jejíž přílohou je i komplet videí popisujících konkrétní pravidla mean reversion strategie.
    Logika long mean reversion vstupů je dobře vidět i na pozicích, které mám právě dnes (25.2.2022) otevřené na jednom ze svých účtů u Interactive Brokers:

    Hlavní graf zobrazuje long pozici v akcii CMC, která má za sebou výrazný pokles. V páteční seanci jsem proto zadával limitní příkaz na cenovou úroveň 50,96. Limitní příkaz byl vyplněn a na konci obchodní seance jsem zatím v otevřeném profitu +309 dolarů. Mimochodem vstupy u všech tří zobrazených pozic jsem dopředu rozesílal v rámci skupiny TradingRoom. Tedy jedna z ohromných výhod této metody obchodování je možnost si vše připravit dopředu evropské ráno a následně již s tradingem žádný čas netrávit.
    Aktuální pozice jsou v plusu, nicméně rok 2022 byl pro longy v mean reversion výzvou – zejména první měsíce 2022, kdy padaly technologické tituly často bez jakýchkoliv korekcí. Equity křivka mých long mean reversion systémů vypadala zhruba takto:

    Jaro 2022 poslalo long mean reversion do drawdownu, z kterého se systém dostává zatím jen velmi pomalu.
    Osobně toto ale nevnímám jako žádnou zásadní tragédii. Zejména proto, že obchoduji jednoduché strategie, u kterých rozumím jak vznikají jejich zisky a ztráty. A ztráty z longu u mean reversion akciových strategií byly začátkem roku 2022 v kontextu chování trhů prostě přirozené. Na výše uvedeném grafu je navíc vidět, jaké neuvěřitelné zisky měly long mean reversion strategie v roce 2020 a 2021. Jsem přesvědčený, že u strategií v budoucnu opět uvidíme nová high.
    Ovšem ztráty strategie 2022 mě průběžně nutily přemýšlet o tom, jak jednoduché mean reversion strategie dále diverzifikovat. Jako velmi triviální cesta se ukázala začít je obchodovat na dalších trzích.
    Takto v betaverzi mé aplikace pro TradingRoom vypadá equity křivka prakticky stejné long mean reversion strategie na kanadských akciových trzích:

    Strategii se zde daří poslední měsíce mnohem lépe (výsledky strategie vytváří nová maxima zisků) než v USA, přestože logika systému je úplně stejná.
    Dnes kanadskou verzi mean reversion systému již obchoduji spolu s US verzí živě na svém účtu a mým plánem je postupně do portfolia přidávat další regiony. Tento přístup velmi dobře reprezentuje můj pohled na profitabilní trading. Pracuji s jednoduchými strategiemi, kterým rozumím. Chápu, že strategie nemohou vydělávat 100% času a je potřeba se diverzifikovat do portfolií. V těch lze ale vymýšlet jen omezený počet logik. Další diverzifikaci tak přináší obchodování stejných logik na dalších trzích.
    A když už jsem zmínil téma portfolií, zde je ukázka toho, jak vypadá dohromady long mean reversion strategie se short mean reversion strategií. Jde o strategie vyučované ve swingovém workshopu, kde jsou nazvány SMR_S (short mean reversion - červená linka) a SMR_L (long mean reversion - zelená linka). Strategie jsou velmi podobné těm, co sám obchoduji jako MR3000. Černá linka reprezentuje portfolio výkonnosti obou strategií dohromady:
     

     
    Long i short verze mají pochopitelně své propady (ty pro dlouhé pozice jsem ostatně popsal v tomto článku). Výkonnost obou strategií dohromady je ale mnohem stabilnější. Už jen tyto dvě strategie dohromady dlouhodobě překonávají benchmark při výrazně nižší volatilitě a především s výrazně nižším zapojením kapitálu (jen cca 50 % kapitálů vůči tomu, co je potřeba při držení indexu). Takto vypadá spojená výkonnost backtestu long + short mean reversion vs. benchmark v podobě S&P 500 (šedá linka):

    Volný kapitál je tak možné využívat do dalších strategií (nebo trhů) a tím dál posouvat výkonnost a snižovat volatilitu. Což je přesně princip, který ve svém obchodování využívám a důvod, proč se tolik nezatěžuji drawdowny v rámci jednotlivých strategií.

    Rok živého obchodování s Finwinem

    Začátkem roku 2021 jsem v sérii YouTube videí popisoval, jak postupovat krok za krokem při stavbě nového obchodního systému. Začal jsem zkoumáním myšlenky, pokračoval přes backtest až k prvnímu nasazení strategie živě. Videa můžete stále nalézt na stránce finwin.cz.
    První obchod jsem provedl 28.1.2021 a od té doby dokumentoval každý nový provedený obchod. Jakkoli bláznivě to může znít, tak i prostřednictvím vstupů, které publikuji prakticky v reálném čase na Twitteru (rychlý přehled obchodů můžete najít na zmíněné stránce finwin.cz). Cílem celé série bylo ukázat, že systematické vydělávání na burze není nedosažitelné. Podstatné je dodržovat určité základní zásady, které jsem se snažil co nejpodrobněji popsat i v knize Od myšlenky k reálným obchodům a jsem přesvědčený, že vydělávat může každý s dostatkem odhodlanosti.
    Pochopitelně, že v době počátku publikování seriálu jsem nemohl vědět, jak obchodování Finwinu skončí. Nicméně moje zkušenost ukazuje, že pokud se pracuje s tzv. „idea first“ metodou popsanou i v knize, většinou se pozitivní výsledky dostaví. I proto jsem se nebál poslat Finwin na burzu s reálnými penězi. A vyplatilo se.
    Po roce je equity křivka Finwinu na historickém maximu.
    Takto vypadá equity křivka systému, pokud bychom jej obchodovali s účtem 20 000 dolarů:

    Za rok jsem se systémem zobchodoval 355 obchodů. Absolutně všechny obchody byly reportovány na Twitteru v reálném čase. Reportuji vždy vstup, výstup je na konci dne (jak je podrobně vysvětleno ve videích).
    Například takto vypadal Twitter včera (článek píši v pátek 4.2.2022):

    Systém shortoval dvě akcie – ARCH a QCOM. A takto vypadá plnění z mého účtu u Interactive Brokers:

    Na účtu je vidět nejprve short v QCOM za cenu 189.33 v 15:38:14 a následně short v akcii ARCH v 15:55:56 za cenu 110.99. Přesně, jak jsem v reálném čase reportoval na Twitteru. Pozice byly uzavřeny s uzavřením burzy – ve 22:00 českého času. Zisk si můžete spočítat sami nebo vzít ten z mé brokerské platformy – tyto dva obchody mi včera na účet přinesly 1 145,40 dolarů, tedy cca 24 000 Kč. To znamená, že sám dnes obchoduji Finwin s výrazně vyšším účtem než 20 000 dolarů – postupem času jsem pozice navyšoval.
    Finwin jde obchodovat s prakticky libovolným účtem. Dnes sdílím v Trading Roomu jak své signály, tak nástroj autotraderu, se kterým obchody exekvuji. Podobné metody lze obchodovat i s pár tisíci dolary (na výpise je vidět, že komise se pohybují kolem 0,30 dolarů /obchod, což je u IB minimum, které platí i pro menší pozice).

    Hledáte cestu, jak se dostat ke konzistentním profitům?
    Rádi byste i v aktuálním kontextu obchodovali stabilně a bez emocí?
    Určitě si přečtěte novou knihu Od myšlenky k reálným obchodům
    Implementujte již od samotného začátku své praxe důležité systematické procesy a správné myšlení, které výrazně zvyšuje šance na stabilně profitabilní obchodování.
    Inspirujte se, jak trading dělat jinak a lépe. Jelikož jsem sám dynamicky navyšoval v systému pozice, reportuji teoretickou výkonnost s účtem 20 000 dolarů. Ve výkonnosti tedy vstupy a výstupy odpovídají mému živému obchodování, ale velikost pozice vychází z uvedené hypotetické velkosti počátečního účtu bez reinvestování.
    Takto by pak vypadaly equity křivky long/short pozic, které jsem obchodoval:

    Červená linka představuje zisky shortů, šedá longů. Long i short pozice byly tedy ziskové, ale výrazně více zisků přišlo ze shortů. Což je skvělá zpráva, protože ve svém portfoliu používám Finwin dnes jako jednu ze složek diverzifikace akciových portfolií, které strategie spíše nakupují.
    Takto pak vychází porovnání dosažené výkonnosti Finwinu s vývojem SP500 (reprezentovaného tickerem SPY):

    Tmavá linka reprezentuje výkonnost Finwinu, šedá linka indexu. Na grafu je vidět, že výkonnost obou křivek je v důsledku velmi podobná. Finwin vydělal více, ale jen o trochu. Obě křivky mají roční míru zhodnocení kolem 20 %  (Finwin bez reinvestování, které výkonnost ještě zvyšuje). Velmi podobné byly i drawdowny. Jak Finwin, tak index měly v průběhu roku nejvyšší drawdown kolem 10 %. V čem se ale systémy liší podstatně, je míra využití kapitálu. V indexu by byl kapitál investován celý (100 % účtu), Finwin kapitál používal z 1/3 (konkrétně 27 %). To je ohromný rozdíl, protože 2/3 kapitálu může pracovat a vydělávat v jiných strategiích, což je přesně to, co dělám v rámci svých diverzifikovaných portfolií. Navíc výkonnost indexu byla za poslední rok nadstandardní, jen málokdo myslím očekává, že indexy pojedou dále s roční mírou zhodnocení 20 %.
    Co se dalších statistik týče, Finwin ve svém prvním roce obchodoval s úspěšností 52,17 % a pozitivním RRR. Průměrný zisk byl 2,54 % účtu, průměrná ztráta 2,01 % účtu. Expectancy byla 0,36 %. Tedy průměrně lze u obchodu očekávat zisk 0,36 % účtu. Sharpe ratio za první rok obchodování bylo 1,43.
    Takto vypadala měsíční distribuce zisků a ztrát strategie:

    Dobře je vidět, jak strategii svědčí volatilita v trzích.  Letos se strategii slušně daří v momentech, kdy si indexy procházejí propady. Proto tento přístup vnímám jako dobrý pro diverzifikaci pomalejších swingových strategií například ze swingového workshopu.
    Shrnutí
    S ročním výročím obchodování Finwinu jsem tedy naprosto spokojený. Jednak proto, že jsem sám vydělal nemalé peníze. Ale také proto, že si nedokáži představit o moc lepší inspiraci pro ostatní, než kterou Finwin poskytl. V sérii veřejných videí jsme si kompletně popsali, jak z myšlenky vykřesat konkrétní obchodní systém. Jak uvažovat při jeho nasazení. V průběhu roku jste na Finančníkovi mohli číst komentáře k vývoji strategie a po roce se ujistit, že nasazená strategie je s profity na maximech.
    Řada lidí zde na Finančníkovi dnes na základě publikované série určitou obdobu Finwinu obchoduje a vydělává. Jsem rád, že jsem mohl poskytnout inspiraci. V dnešní šílené inflační době je potřeba s penězi aktivně pracovat a automatizované systematické obchodování je z mého pohledu jednou z velmi perspektivních cest. Nejvíce se mi na ní líbí, že práci je třeba odvést jednou při stavbě systému a následně už „věci jedou samy“.
    Pokud hledáte asistenci s rozhozením podobného principu obchodování, pak doporučuji začít s knihou  Od myšlenky k reálným obchodům. Rozhodnete-li se stavět podobný systém sami, můžete využít kompletní kód mean reversion strategie MR3000 sdílené v otevřené podobě ve swingovém workshopu. U strategie stačí předělat výstup na „EOD“ a Finwin je hotový. Pro pomoc s exekucí systémů se můžete zapojit do Trading Roomu. Zde sdílím přesně stejné signály, které sám obchoduji (a které následně publikuji na Twitteru), plus připravuji průběžně reporty, kde se naučíte na strategie nahlížet s využitím dalšího mého know-how. A samozřejmě je zde k dispozici i můj intradenní autotrader. Obchodníci s ročním členstvím jej dokonce získají v podobě otevřeného Python kódu a mohou tak libovolně strategie rozšiřovat již vlastním směrem bez nutné počáteční časové investice.
×
×
  • Vytvořit...